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Abstract

A supersonic rolling missile with two syn-
chronous canard control surfaces is analyzed us-
ing an automated, inviscid, Cartesian method.
Sequential-static and time-dependent dynamic
simulations of the complete motion are com-
puted for canard dither schedules for level flight,
pitch, and yaw maneuvers. The dynamic simula-
tions are compared directly against both high-
resolution viscous simulations and relevant ex-
perimental data, and are also utilized to com-
pute dynamic stability derivatives. The results
show that both the body roll rate and canard
dither motion influence the roll-averaged forces
and moments on the body. At the relatively low
roll rates analyzed in the current work these dy-
namic effects are modest, however the dynamic
computations are effective in predicting the dy-
namic stability derivatives which can be signifi-
cant for highly-maneuverable missiles.

1 Introduction

The use of Computational Fluid Dynamics
(CFD) to simulate the steady flow about static
geometries is now common practice for engineers
and analysts. The ability to routinely simu-
late dynamic configurations, where the geome-
try moves in some manner during a computa-
tion, however, is still a computationally-intensive
problem. For many applications, such as rotor-
craft, turbines, or rolling missiles, the motion of
the body is a fundamental aspect of the simu-
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lation and must be accounted for in some man-
ner. The current work demonstrates an invis-
cid Cartesian method for simulating a rolling
airframe with movable canard control surfaces.
The Cartesian method provides an efficient, auto-
mated, and robust approach for performing CFD
simulations about arbitrarily complex geometries
(cf. Refs. [1, 2]).

There are several numerical schemes capable
of simulating a dynamic configuration where ac-
tive control surfaces move relative to the body
(cf. Refs. [3, 4, 5, 6]), however few methods have
been applied to the analysis of a rolling air-
frame. Weinacht et al. [7,8], demonstrated meth-
ods for analyzing axisymmetric geometries with
fins, using steady-state algorithms to determine
the pitch-damping coefficient. Recently, Oktay
and Akay [9] and Park et al. [10], performed un-
steady dynamic simulations of a simple finned
missile geometry using rigid domain motions in
order to compute a general set of dynamic sta-
bility derivatives. Janus et al. [11] demonstrated
a multi-block structured approach for relative
body motion on a prop-fan cruise missile, and
recently Hall [12] applied an overset structured
approach to the simulation of a rolling airframe
with dithering canards.

The current work presents a general method
for simulating moving geometries with relative
body motion in 3D. This method is applied to
the simulation of a rolling missile with both fixed
and moving canard control surfaces. An efficient
scheme for computing dynamic stability deriva-
tives using rigid domain motions is presented and
utilized to compute the damping coefficients for
the current missile configuration. Comparisons
are made for the current results between static
and dynamic simulations, against high-fidelity
viscous simulations [13], and also against relevant
experimental data [14].
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2 Numerical Method

2.1 Geometry and Computational
Mesh

The canard-controlled missile considered in
this work is shown in Fig. 1 for it’s zero-roll
(φ = 0◦) configuration. The canards are shown
in their zero-deflection position. The body is
approximately shaped like a hemisphere-cylinder
and has a fineness ratio (length/diameter) of
roughly 20. The are four fixed, interdigitated
tails which are canted 1◦ to generate a counter-
clockwise roll when viewed from the nose, and
two canards which act as control surfaces. These
canards are interconnected so that their motion is
synchronous, and as the body rolls the canards
can change positions to affect controlled move-
ments, such as yaw or pitch. This canard motion
is sometimes referred to as “dithering”. Two ca-
nard dither schedules based on an analytic model
of Stalnaker [15] are considered in this work, and
they are both outlined in Fig. 2 for a body roll
rate of 8.75 Hz (positive roll is counter-clockwise
when viewed from the nose). The canards can
sustain only two positions; either the minimum
or maximum deflection angle, which is ±15◦ in
this case. As the body rolls, the canards dither
between their min. and max. deflection angles at
discrete roll positions. For example, in Dither
Schedule 0 the canards start to move from −15◦
deflection at φ = 0◦. The time of travel between
the two deflection angles corresponds to approxi-
mately 21 degrees of roll at this roll rate, so that
at φ = 21◦ the canards are positioned at +15◦
deflection. It’s also possible that the canards do
not complete their travel before being instructed
to “reverse”, as can be seen in Dither Schedule 1
near φ = 200◦. Note that both of the canard
dither schedules are periodic over one complete
revolution of the body.

The current configuration poses a challenge,
especially when creating a computational mesh
which can be solved efficiently, due to the large
variation in physical scales which must be re-
solved. The sharp edges of the canards must be
resolved in order to generate strong canard tip
vortices. These canards vortices must be pre-
served as they convect the length of the body
in order to resolve the canard vortex/tail inter-
action that occurs at low-moderate angles of at-
tack. Further, the large bow shock that forms
ahead of the body in supersonic flow, as well
as the shock structures around the canards and
fins, must also be resolved. Volume mesh gener-
ation was performed using the Cartesian mesh-
ing scheme of Aftosmis et al. [1]. This pack-
age takes as input the triangulated surface ge-
ometry and generates an unstructured Cartesian
volume mesh by subdividing the computational
domain based upon the geometry. In this man-
ner, the sharp geometric features contain refined

Figure 1: Missile surface geometry.

Figure 2: Motion of canard control surfaces for
8.75 Hz body roll rate.

2



Figure 3: Cutting planes through Cartesian mesh.

cells, while areas away from the geometry main-
tain a relatively coarse spacing. The intersection
of the solid geometry with the the regular Carte-
sian hexahedra is computed, and polyhedral cells
are formed which contain the embedded bound-
ary. Cells in regions interior to the solid geometry
are removed. The solid-wall boundary conditions
for the flow solver are then specified within these
“cut-cell” polyhedra. The volume meshing pro-
cedure is provably robust, and does not require
user intervention (cf. Refs. [1,16] for more details
on the Cartesian volume meshing). Optionally,
volume regions within the domain can be speci-
fied to contain a specific resolution. These pre-
specified regions are utilized in the current work
to resolve the bow shock ahead of the body, and
the canard vortex trajectory on the leeward side
of the fuselage. Fig. 3 shows a lateral cutting
plane through the canard, as well as two axial
cutting planes along the body; one just behind
the canards, and one intersecting the tail section.
The resolved regions for the shocks and the uni-
form vortex region the length of the body are
clearly visible, as well as the refinement near the
sharp features of the geometry, such as the lead-
ing and trailing edges of the canards, and the tips
of the tail fins.

A grid resolution study was performed using
a static missile configuration at flow conditions
M∞ = 1.6, α = 3.0◦, φ = 0.0◦, and with the
canards undeflected. These flow conditions rep-
resent a nominal baseline configuration for the
current work, while the undeflected canards still
generate strong vortices which impact the tail
section. Simulations were performed using three
mesh densities; 1.2x106 , 3.4x106, and 6.0x106

cells. Computed results were compared in terms
of the axial and normal forces, and pitching and
rolling moments on the body. The difference be-
tween the medium and finest grids in terms of
the integrated quantities was less than 3%. Com-

parison with highly-refined viscous simulations of
Nygaard and Meakin [13] also showed results con-
sistent with the difference between inviscid and
viscous simulations. Based upon these findings, a
grid density of roughly 3.4x106 cells was utilized
for all of the simulations, and this is the level of
refinement shown in Fig. 3.

2.2 Cartesian Moving-Body Flow
Solver

In order to simulate a rolling missile with
dithering canards, it’s necessary to utilize a
scheme that can allow rigid bodies to move rel-
ative to each other during a simulation. A gen-
eral numerical scheme for solving time-dependent
flows with (optional) rigid-body motion for un-
structured Cartesian meshes was developed from
the parallel, steady-state solver of Aftosmis et
al. [2]. This section will provide a brief overview
of the scheme. Complete details and analysis of
the numerical scheme will be provided in a future
publication [17].

2.2.1 Dual-time formulation

In order to leverage the infrastructure of the
steady-state flow solver outlined in Ref. [2], a
dual-time formulation (cf. Refs. [18, 19]) was de-
veloped for the time-dependent scheme,

dQ
dτ

+ R∗ (Q) = 0

R∗ (Q) =
∂Q
∂t

+ R (Q)
(1)

where τ is referred to here as “pseudo-time”, and
is the iterative parameter, and t is the physical
time. Q is the vector of conserved variables, and
R (Q) is an appropriate numerical quadrature of
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the flux divergence, 1
V

∮
S
f ·ndS. As dQ

dτ → 0 the
time-dependent formulation is recovered. The
multi-grid solver described in [2] is utilized to
efficiently converge the inner pseudo-time inte-
gration. An explicit, multi-stage, pseudo-time-
integration scheme is utilized to converge the
“inner loop” in Eqn. 1. This is similar to the
scheme outlined by Jameson [20], however, the
semi-implicit approach of Melson et al. [21] is
used here for the physical time-derivative term.

Various time-dependent schemes can be con-
structed for Eqn. 1 by appropriately discretiz-
ing the time derivative. In the current work,
it’s desirable to utilize an unconditionally-stable,
implicit scheme to allow a large timestep to
be chosen based upon physical considerations
rather than a potentially smaller stability-limited
timestep. In the Cartesian embedded-boundary
scheme, the cut-cell polyhedra can have arbi-
trarily small volumes, and a stability limit can
be very restrictive. Using a large timestep also
reduces the amount of computational work re-
quired to process the moving geometry and mesh
through a complete simulation. In the current
work, the backward Euler and 2nd-order back-
ward time-integration schemes have both been
utilized.

2.2.2 ALE formulation

Considering the motion of the rolling missile
with dithering canards described in Sec. 2.1 in a
body-fixed frame, the regions where relative mo-
tion occur are confined to a small area surround-
ing the canards. This is not unique to rotating
airframes, and occurs in many applications such
as rotorcraft or stage separation from space ve-
hicles. It’s desirable to simulate the rotation of
the entire missile using a rigid-body motion of
the entire computational domain, and treat the
relative motion of the canards separately within
the rotating domain. This approach limits the
amount of computational work that is required
to process the moving geometry.

An Arbitrary-Langrangian-Eulerian (ALE)
formulation is utilized in order to account for the
rigid-body motion of the computational domain
(cf. Hirt et al. [22] for the development of the
ALE formulation). This is accomplished by mod-
ifying the flux through a boundary to account for
the motion of the boundary. For the inviscid flux
vector utilized here, this becomes

f · n =

{
ρun

ρunu + pn
ρune + pu · n

}
(2)

where
un = (u − uΩ) · n

is the velocity relative to the moving boundary,
and uΩ is the velocity of the moving domain.

Hence the convective part of the flux is modi-
fied to account for the motion of the boundary,
compared to the treatment for a fixed domain.
A modified form of van Leer’s flux-vector split-
ting (FVS) [23] is used with the ALE formulation.
This modification uses the Mach number relative
to the moving boundary, Mnc = (u − uΩ) · n,
when determining the characteristic speeds of the
system.

Note that the geometry of the domain is ex-
pressed in the moving coordinate system, and
must be transformed to the inertial system where
the equations of motion are specified. While this
does remove some of the algorithmic simplifica-
tions of a Cartesian scheme, it’s noted that the
majority of faces of the computational domain
have normals pointing in one of the Cartesian di-
rections of the moving domain. These normals all
transform identically and it’s possible to precom-
pute and store this information at each timestep.

2.2.3 Relative motion

Figure 4 shows a schematic of a rigid-body
moving through a fixed Cartesian mesh over
one discrete timestep. The shaded region high-
lights cells which have been “swept” by the body
through the timestep. These swept cells change
volume and shape over the timestep, and can ap-
pear or disappear (or both) as well. The equa-
tions of motion for the deforming cells can be
written in an integral conservation form as∫

V (t)

QdV =

[
−

∮
S(t)

f · ndS

]
dt (3)

Integrating Eqn. 3 using the backward Euler
scheme gives

Qn+1 − V n

V n+1 Qn

∆t
= − 1

V n+1

[∑
f · n∆S

]n+1

(4)
This can be numerically integrated using the
dual-time scheme outlined above. The term

V n

V n+1 Qn becomes a fixed source term in the dual-
time scheme. However, Qn is only available on
the mesh at time level n, while it is required on
the mesh at time level n+1 in order to integrate
Eqn. 4. Rewriting Eqn. 4 gives

Qn+1 − Q̂n

∆t
= − 1

V n+1

[∑
f · n∆S

]n+1

(5)

where Q̂n represents the state vector at time level
n on the mesh at time level n + 1.

In the current scheme, the vector Qn is
“mapped” from the mesh at time level n to the
new mesh at n+1 using an interpolation operator
In+1
n .

Q̂n = In+1
n Qn (6)
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(a) n (b) n+1

Figure 4: Schematic of a rigid-body moving through a Cartesian mesh.

If In+1
n = V n

V n+1 then Eqn. 4 is satisfied. The in-
terpolation operator In+1

n can be determined ex-
actly using a space-time approach (cf. Refs. [24,
25]), however doing so in three dimensions poses
a problem in 4-D mesh generation. Instead, an
approximate scheme is desired which maintains
conservation away from the region of the relative
motion. The current scheme determines In+1

n ex-
actly for all cells away from the moving bound-
ary, as well as the majority of the cut cells at
both time levels. For a small minority of the
swept cells In+1

n is approximated. In the current
work, the mapping of the solution between two
meshes is processed external to the flow solver
with a single-pass algorithm. Note that since the
motion is prescribed, all of the meshes can be
processed a priori, and in parallel.

An oscillating NACA 0012 airfoil is used to ex-
amine the behavior of the approximate, relative-
motion scheme outlined above. The tran-
sonic AGARD experimental test case [26] was
computed using both the 2nd-order backward
scheme with the conservative, moving-domain
ALE scheme, and the 1st-order (in time) relative-
motion scheme. Both schemes utilize the same
spatially 2nd-order numerical flux formulation.
The computed normal force variations with angle
of attack are shown in Fig. 5. Both simulations
capture the hysteresis caused by the unsteady
shock formation, and are in relatively good agree-
ment with the experimental data. Flow visualiza-
tions show no appreciable differences between the
two simulations. Further analysis and validation
of the numerical scheme will be presented in a
future publication [17].
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Figure 5: Time history of normal force co-
efficient. (M∞ = 0.755, α(t) = 0.016 +
2.51 sin (2π62.5t)).

3 Numerical Results

The general 3-D Cartesian scheme outlined
above is utilized to simulate the rolling mis-
sile geometry with movable canards described in
Sec. 2.1. These simulations are intended to both
demonstrate the capabilities of the method, and
examine several topics pertinent to the current
application. The dynamic effects are examined
by comparison with a series of static, steady-state
simulations. The ability of the method as a pre-
dictive tool for rolling airframes is examined by
comparison of the computed results with viscous
simulations, and direct comparison with exper-
imental data. Comparisons with experimental
data are included for both the rolling airframe
with dithering canards, and the prediction of dy-
namic stability derivatives.
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3.1 Static-Roll Baselines

At the flow conditions of interest for the cur-
rent work (M∞ = 1.6, α = 3.0◦), with the
body rolling at 8.75Hz, a particle travels one
body length in approximately 8 degrees of rev-
olution (the non-dimensional roll-rate based on
the freestream velocity and body diameter is
StD = 0.0087). A particle in the canard vor-
tex travels from the canard tip to the aft end of
the body in approximately 6 degrees of body roll.
This relatively low roll rate (and corresponding
low vortex twist), implies that a series of static
computations at different roll and canard orienta-
tions should be a good approximation for the true
dynamic behavior. Given the lack of detailed ex-
perimental data,∗ a series of “sequential-static”
simulations of the current rolling/dithering mis-
sile were performed in order to have a baseline
for comparison with the dynamic simulations.

Static, steady-state simulations were per-
formed at 2 degree increments of roll using both
Dither Schedules 0 and 1 from Fig. 2 to schedule
the canard pitch angle. The computed forces for
both sequential-static series of computations are
summarized in Fig. 6. The axial force for both
dither schedules remains relatively constant, and
is effectively a function of the exposed frontal
area of the canards. Both the lateral and normal
forces show an immediate and strong response to
changes in canard position. Note that in these
static simulations a change in canard position is
“felt” instantaneously by the tail section. In both
dither schedules the normal and lateral forces
change due to both roll orientation and canard
pitch angle. For instance, in Dither Schedule 1
the normal force falls off while the lateral force
increases as the body begins to roll. When the
canards dither at φ = 55◦, it has only a moder-
ate effect on normal force as the canards are ap-
proaching vertical, however it causes the lateral
force to immediately change sign. This is due
to the canard lifting surfaces providing the ma-
jority of the lateral force in this roll orientation,
as the canard vortices are located in a vertical
plane. Similar analysis of the force response can
be carried out for the entire roll/dither cycle.

While the details of the force and moment vari-
ations with roll angle provide insight, the main
focus of the current work is to analyze the effect
of the dynamics and canard dither on the roll-
averaged loads. One method of analyzing the roll
behavior of the missile is to examine the normal
force and lateral force in a polar plot as the roll
angle varies. These force polar plots are shown
for the sequential-static simulations in Fig. 7.
The radius of the plot is the magnitude of the
crossflow force, and the polar angle is the roll an-
gle. If the canards are fixed, then the force polar
inscribes a circle as the body rotates, as the ca-

∗The experimental data referred to in Sec. 3.2 and 3.3
was not available until recently.
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Figure 6: Computed forces for sequential-static
roll simulations (M∞ = 1.6, α = 3.0◦, φ̇ =
8.75Hz).

nards continuously transition from providing nor-
mal force to lateral force and vice versa. A nearly
identical plot can be generated by considering the
pitching moment and yawing moment instead of
normal and lateral forces. The dithering of the
canards can be utilized to favor a particular re-
gion in the polar as the body rolls (relative to
the circular plot for fixed canards). For example,
Dither Schedule 0 is relatively balanced, while
Dither Schedule 1 is almost a pure normal force
(pitch) command. The bi-lateral symmetry of
the plots is highlighted by including a solid line
along the approximate axis of symmetry. The
roll-averaged force lies on this axis of symmetry
(see also Table 1).
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Figure 7: Crossflow force polar for sequential-
static roll simulations (M∞ = 1.6, α = 3.0◦, φ̇ =
8.75Hz).

3.2 Dynamic Computations with
Dithering Canards

With an unconditionally-stable implicit nu-
merical scheme, such as is used in the current
work, the timestep is limited by physical consid-
erations and accuracy rather than stability. Due
to this, an appropriate timestep must be deter-
mined for each unsteady simulation, much as an
appropriate mesh resolution must be chosen for
static simulations. One method for determining a
timestep is to utilize a mesh which resolves all of
the spatial scales of interest for the current prob-
lem, and perform a time resolution study using
this mesh. The 3.4M cell mesh from the mesh res-

olution study described in Sec. 2.1 was utilized to
compute a series of dynamic roll computations
with the canards fixed at their maximum pitch
angle (δc = 15.0◦). Three simulations with in-
creasingly finer time resolutions were computed,
along with a sequential-static simulation. The
computed normal and lateral forces for this time
resolution study are presented in Fig. 8. Since
the canards are fixed, the force variation is sinu-
soidal, and should maintain nearly the same peak
values as the sequential-static simulations, with
a roughly 6◦ lag due to the body rotation at this
roll rate. It’s seen that this is provided by the
finest timestep computed, ∆t = 0.58◦ of roll. As
a compromise between accuracy and efficiency, a
timestep of ∆t = 1.0◦ of roll was utilized for all
subsequent computations.
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Figure 8: Time resolution study with fixed ca-
nards (M∞ = 1.6, α = 3.0◦, φ̇ = 8.75Hz,
δc = 15.0◦).

In order to examine the dynamic effects for the
rolling airframe, the dither schedules presented in
Fig. 2 were computed using the Cartesian general
moving boundary scheme outlined in Sec. 2.2.
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The force variation for both dither schedules is
compared to the sequential-static simulations in
Fig. 9. The agreement between the static and dy-
namic simulations is very close, as anticipated.
Whenever the canards abruptly stop their mo-
tion, the fluid cannot respond instantaneously to
the rigid structural motion, and hence the dy-
namic simulations “overshoot” the static simula-
tions. An example of this is seen near φ = 22◦ for
Dither Schedule 0. The dynamic simulation pre-
dicts slightly more normal force at the end of the
canard dither motion, and then under-predicts
after the motion has stopped. This behavior is
similar to the hysteresis seen in Fig. 5 for the
oscillating airfoil. The predicted roll-averaged
quantities are summarized in Table 1. There is
close agreement between the static and dynamic
roll-averaged normal and axial forces, and some-
what larger percentage differences in the lateral
forces.
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Figure 9: Comparison of static and dynamic force
variation (M∞ = 1.6, α = 3.0◦, φ̇ = 8.75Hz).

Figure 10 shows snapshots of velocity magni-
tude cutting planes (blue is low, red is high) from
the dynamic simulation for Dither Schedule 0.

(a) φ = 45.5◦

(b) φ = 57.6◦

(c) φ = 71.8◦

Figure 10: Velocity magnitude contours for
Dither Schedule 0 (M∞ = 1.6, α = 3.0◦, φ̇ =
8.75Hz).

These show that the canard vortices convect back
to the exit plane of the computational domain aft
of the tail fins. At this angle of attack, there is
a strong interaction between the canard vortices
and the tail fins. The canard tip vortex can be
seen just outside the tail fin bow shock in the last
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axial cutting plane on the body. The twist of the
canard vortices is evident, though difficult to dis-
cern at this low body roll rate. The change in the
shock structure on the canards as they dither can
be seen, as well as the change in sense of rotation
of the canard tip vortices.

Force polar comparisons of the static and dy-
namic simulations for both dither schedules are
presented in Fig. 11. The effect of the dynamics
can be seen as enlarging the areas of the “leaves”
of the rosettes, as compared to the static simu-
lations. The roll rate changes the sweep of the
leaf, while the canard motion changes the outer
limit.
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Figure 11: Comparison of static and dynamic
force polars (M∞ = 1.6, α = 3.0◦, φ̇ = 8.75Hz).

As noted in the comparison of the static and
dynamic simulations above, the dynamic effects
with the body rolling at 8.75Hz are not substan-
tial. In order to assess the dynamic effects at
higher roll rates, a simulation was performed us-
ing a roll rate of 17.5Hz and Dither Schedule 0.
Note that at this higher roll rate, the canards
dither half as frequently as shown in Fig. 2. The
dither schedule for this higher roll rate is in-
cluded in the summary force and moment plots
in Fig. 12. It’s seen that while the higher roll
rate produces a different variation of the forces
and moments with roll angle, the roll-averaged
values are nearly unchanged (cf. Table 1). The
roll-averaged rolling-moment does decrease at the
higher roll rate due to the cant of the tail fins.
The yawing moment also increases in magnitude,
as the aft end of the body lags the canards at the
higher roll rate. The effects of roll rate will be
discussed further in the next section on dynamic
derivatives. A comparison of the force polars for
the 8.75Hz and 17.5Hz roll rates is presented in
Fig. 13. The two paths are different, but both are
relatively balanced and provide the same mean
forces.
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Figure 12: Dynamic load variation (M∞ = 1.6,
α = 3.0◦, φ̇ = 17.5Hz).
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Figure 13: Comparison of dynamic force polars
(M∞ = 1.6, α = 3.0◦).

A viscous, high-resolution (40M cells, 12000
timesteps/rev) reference simulation by Nygaard
and Meakin [13] is utilized as a baseline for com-
parison with the current inviscid results. The
computed forces and moments for the simula-
tion using Dither Schedule 0 are compared to
the viscous simulations in Fig. 14. The agree-
ment between the two simulations is very good
throughout the roll cycle. As expected, there is
a constant increment in axial force between the
current inviscid results and the viscous simula-
tions due to wall shear stress. The viscous results
do consistently predict a slightly higher normal
force through the roll cycle, and a slightly lower
(more nose down) pitching moment compared to
the current results.

In order to assess the predictive capability of
the current approach, a simulation of a recent ex-
perimental test [14] was performed. The exper-
iment included both the ability to roll the air-
frame and dither the canards, and also provided
a measure of the experimental uncertainty. The
actual canard motion from the experiment over
ten revolutions is presented in Fig. 15, along with
an ensemble of averages of the canard position,
and an analytic approximation to the ensemble
average which is used to schedule the canards in
the simulation. Again, the canard dither motion
is periodic over a single body revolution. The
computed forces and moments using this dither
motion are presented in Fig. 16. The forces and
moments again show an immediate and strong
response to the motion of the canards. As op-
posed to the previous dither computations, this
dither motion produces a yaw of the body. This
can be clearly seen in the force polar (Fig. 17).
The roll-averaged forces and moments are com-
pared against the experimental values in Table 2.
In all cases, the computed values are within the
experimental uncertainty.
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Figure 14: Comparison of Dither Schedule 0 load
histories with viscous results from [13] (M∞ =
1.6, α = 3.0◦, φ̇ = 8.75Hz).
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Figure 15: Experimental canard motion [14]
(M∞ = 1.6, α = 3.0◦, φ̇ = 18Hz).
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Case CA CN CY Cl Cm Cn

Static, 8.75Hz, Sched. 0 0.95 0.37 0.0015 N/A N/A N/A
Dynamic, 8.75Hz, Sched. 0 0.95 0.38 -0.035 0.013 0.18 -0.011
Dynamic, 17.5Hz, Sched. 0 0.95 0.38 -0.035 -0.020 0.19 -0.25

Static, 8.75Hz, Sched. 1 0.97 0.62 0.049 N/A N/A N/A
Dynamic, 8.75Hz, Sched. 1 0.97 0.62 0.026 0.013 2.5 0.38

Table 1: Roll-averaged forces and moments for Dither Schedules 0 and 1 (M∞ = 1.6, α = 3.0◦).

CN CY Cl Cm Cn

Experiment [14] 0.45 – 0.61 0.15 – 0.20 -0.036 – -0.019 -1.5 – -0.40 0.93 – 1.5
Computed 0.55 0.20 -0.034 -0.48 1.46

Table 2: Roll-averaged forces and moments for Fig. 15 dither schedule (M∞ = 1.6, α = 3.0◦,
φ̇ = 18Hz).
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Figure 16: Dynamic load variation for Fig. 15
dither schedule (M∞ = 1.6, α = 3.0◦, φ̇ =
18.0Hz).
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Figure 17: Dynamic force polar for Fig. 15 dither
schedule (M∞ = 1.6, α = 3.0◦, φ̇ = 18.0Hz).
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3.3 Dynamic Derivatives with
Fixed Canards

The previous sections simulate the actual mo-
tion of the rolling missile with dithering canards.
Rather than simulate the actual motion for each
dynamic case of interest, it’s preferable to build
a computational database which is capable of
simulating any dynamic motion. One common
method of building a computational database is
to perform a parametric study for all of the possi-
ble geometric configurations and freestream con-
ditions using a static, steady-state flow solver.
This approach can be extended to include dy-
namic effects by performing a similar paramet-
ric study, varying the relevant dynamic param-
eters such as body roll rate (cf. Refs. [27, 9]).
From this dynamic parameter study, dynamic
stability derivatives can be computed and used
with the static derivatives to build a computa-
tional database. This approach is especially rele-
vant to missile configurations, which are highly-
maneuverable (e.g. ±15g), and hence frequently
encounter an extreme range of flow conditions
which require the higher-order dynamic deriva-
tives.

Simulations of the rolling missile with the ca-
nards fixed in the zero-deflection position were
performed at three roll rates to match the avail-
able experimental data [14]; 9Hz, 12Hz, and
18Hz. For the current configuration, the quan-
tities of primary interest for dynamic modeling
are the roll- and yaw-damping,

Clp =
2V∞
D

∂Cl

∂p
Cnp

=
2V∞
D

∂Cn

∂p
(7)

The pitching moment remains essentially con-
stant at the roll rates and angle of attack be-
ing investigated here. Figure 18 presents the
yaw- and roll-damping against the experimen-
tal data. The agreement with the experimental
data is very good, and all of the computed data
points are within the experimental uncertainty.
At these relatively low roll rates, both the yawing
and rolling moments show a linear dependence
on roll rate. The damping coefficients hence cor-
respond to the slopes of the curves in Fig. 18.
As the roll rate is increased, the canard vortices
experience more twist as they travel the length
of the body. This increase in twist causes the
yawing moment relative to the c.g. location to
increase as the roll rate increases, as the flow on
the aft end increasingly lags behind the canards.
The rolling moment is most strongly influenced
by the cant of the tail fins. At these flow con-
ditions, both the computations and experiment
show that if the missile were unconstrained, the
fins would cause it to roll at 10-15Hz.
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Figure 18: Dynamic derivatives with fixed ca-
nards (M∞ = 1.6, α = 3.0◦, δc = 0.0◦).

4 Summary

A 3-D Cartesian method for simulating the
general prescribed motion of rigid bodies was
developed and applied to the analysis of a
rolling airframe with movable canard control sur-
faces. Dynamic simulations for several canard
dither schedules and roll rates were performed,
and compared against static simulations, high-
resolution viscous simulations, and relevant ex-
perimental data. The results show that the cur-
rent scheme can be used as an effective predictive
tool for both the complete rolling motion with
canard dither, as well as for computing dynamic
stability derivatives. At the relatively low roll
rates considered in this work, a series of static,
steady-state simulations provides a good approx-
imation to the actual dynamic motion. Com-
parisons with the viscous results of Nygaard and
Meakin [13] show that the current inviscid results
capture the same trends, and can be corrected
with a constant viscous axial force increment.
Direct comparison with recent experimental data

12



shows that the computed forces and moments are
within the experimental uncertainty for all sim-
ulations considered.
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